45 research outputs found

    Dagger Categories of Tame Relations

    Get PDF
    Within the context of an involutive monoidal category the notion of a comparison relation is identified. Instances are equality on sets, inequality on posets, orthogonality on orthomodular lattices, non-empty intersection on powersets, and inner product on vector or Hilbert spaces. Associated with a collection of such (symmetric) comparison relations a dagger category is defined with "tame" relations as morphisms. Examples include familiar categories in the foundations of quantum mechanics, such as sets with partial injections, or with locally bifinite relations, or with formal distributions between them, or Hilbert spaces with bounded (continuous) linear maps. Of one particular example of such a dagger category of tame relations, involving sets and bifinite multirelations between them, the categorical structure is investigated in some detail. It turns out to involve symmetric monoidal dagger structure, with biproducts, and dagger kernels. This category may form an appropriate universe for discrete quantum computations, just like Hilbert spaces form a universe for continuous computation

    Renormalization : A number theoretical model

    Get PDF
    We analyse the Dirichlet convolution ring of arithmetic number theoretic functions. It turns out to fail to be a Hopf algebra on the diagonal, due to the lack of complete multiplicativity of the product and coproduct. A related Hopf algebra can be established, which however overcounts the diagonal. We argue that the mechanism of renormalization in quantum field theory is modelled after the same principle. Singularities hence arise as a (now continuously indexed) overcounting on the diagonals. Renormalization is given by the map from the auxiliary Hopf algebra to the weaker multiplicative structure, called Hopf gebra, rescaling the diagonals.Comment: 15 pages, extended version of talks delivered at SLC55 Bertinoro,Sep 2005, and the Bob Delbourgo QFT Fest in Hobart, Dec 200

    `What is a Thing?': Topos Theory in the Foundations of Physics

    Full text link
    The goal of this paper is to summarise the first steps in developing a fundamentally new way of constructing theories of physics. The motivation comes from a desire to address certain deep issues that arise when contemplating quantum theories of space and time. In doing so we provide a new answer to Heidegger's timeless question ``What is a thing?''. Our basic contention is that constructing a theory of physics is equivalent to finding a representation in a topos of a certain formal language that is attached to the system. Classical physics uses the topos of sets. Other theories involve a different topos. For the types of theory discussed in this paper, a key goal is to represent any physical quantity AA with an arrow \breve{A}_\phi:\Si_\phi\map\R_\phi where \Si_\phi and RÏ•\R_\phi are two special objects (the `state-object' and `quantity-value object') in the appropriate topos, Ï„Ï•\tau_\phi. We discuss two different types of language that can be attached to a system, SS. The first, \PL{S}, is a propositional language; the second, \L{S}, is a higher-order, typed language. Both languages provide deductive systems with an intuitionistic logic. With the aid of \PL{S} we expand and develop some of the earlier work (By CJI and collaborators.) on topos theory and quantum physics. A key step is a process we term `daseinisation' by which a projection operator is mapped to a sub-object of the spectral presheaf \Sig--the topos quantum analogue of a classical state space. The topos concerned is \SetH{}: the category of contravariant set-valued functors on the category (partially ordered set) \V{} of commutative sub-algebras of the algebra of bounded operators on the quantum Hilbert space \Hi.Comment: To appear in ``New Structures in Physics'' ed R. Coeck

    Categorical Studies in Italy

    No full text
    Raccolta di articoli sugli sviluppi della teoria delle categorie in Italia, dal 1975 al 200

    Fixpoint and loop constructions as colimits

    No full text
    corecore